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Abstract. We present a numerical algorithm to solve the Boltzmann equation for the electron distribution
function in magnetic multilayer heterostructures with non-collinear magnetizations. The solution is based
on a scattering matrix formalism for layers that are translationally invariant in plane so that properties
only vary perpendicular to the planes. Physical quantities like spin density, spin current, and spin-transfer
torque are calculated directly from the distribution function. We illustrate our solution method with a
systematic study of the spin-transfer torque in a spin valve as a function of its geometry. The results
agree with a hybrid circuit theory developed by Slonczewski for geometries typical of those measured
experimentally.

PACS. 85.75.-d Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated
magnetic fields – 75.47.De Giant magnetoresistance

1 Introduction

Magnetic multilayer structures have attracted a great deal
of experimental and theoretical attention. One motiva-
tion for these studies is the potential application of such
structures for data storage and spin dependent transis-
tors. One special effect in a magnetic multilayer that can
induce magnetic reversal or magnetic dynamics is called
spin-transfer. In the ten years since its theoretical pre-
diction [1,2], spin-transfer has been studied extensively
both experimentally [3–7] and theoretically [8–13]. One
fundamental issue is how to reliably calculate the spin-
transfer torque in spin valve systems. To solve this prob-
lem, different approaches have been developed, including
the Boltzmann equation [14,15], microscopic quantum me-
chanics [16], drift-diffusion theory [17–20], and circuit the-
ory [21,22].

Each approach has its own advantages and disadvan-
tages. Simple theories, for example circuit theory or the
drift-diffusion approach, treat the transport in terms of
densities and current densities and do not track individ-
ual electrons. Such methods have the advantage that they
can give analytic results in some limits and the disad-
vantage that they leave out some essential physics. One of
the major approximations of these theories is that they ig-
nore the differences between electrons propagating in dif-
ferent directions. Fully quantum mechanical calculations
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track all of the electrons and all of the coherent scattering
processes like coherent multiple scattering between layers.
However, such calculations are quite time consuming and
the coherent multiple scattering between layers that is in-
cluded in such an approach does not seem to play a role
in experimental results.

The semiclassical Boltzmann equation is a useful com-
promise between these extremes. In such an approach,
the scattering is treated semiclassically. For transport
in collinear magnetic systems, it has been used in two
ways. Superlattices that have mean free paths longer than
layer thicknesses can be treated as artificial bulk mate-
rials [23,24]. This approach retains the coherent multiple
scattering between the interfaces. The other approach is to
solve the Boltzmann equation within layers and join the
solutions through boundary conditions at the interface.
Here, we describe a generalization of the latter approach to
treat non-collinear magnetizations. In this approach, the
Boltzmann equation tracks individual electrons through
the distribution function, but ignores the coherent mul-
tiple scattering. It is easier to treat defect scattering in
such an approach than it is in a fully coherent calcula-
tion. The advantage of the Boltzmann calculation is that
it is simply computable and includes the essential physics.
One disadvantage is that it cannot give analytical results.
The neglect of coherent multiple scattering between inter-
faces is both an advantage and a disadvantage. The greater
simplicity that results in the calculation is an advantage
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for the metallic devices that have been measured to date
because the coherent scattering does not appear to play
a role. However, this neglect would be a disadvantage in
devices in which such effects were important.

Slonczewski has developed a hybrid approach combin-
ing aspects of circuit theory with a simplified Boltzmann
equation to give an analytic expression for the spin-
transfer torque [25]. This approach gives much more ac-
curate results than the drift-diffusion method for typical
device geometries. However, it breaks down when layer
thicknesses become longer than are typical.

In this paper, we describe a numerical algorithm that
solves the Boltzmann equation for the electron distribu-
tion function in a magnetic multilayer system using a
scattering matrix formalism. The spin-transfer proper-
ties are calculated from the resulting distribution func-
tion. We compare our Boltzmann results to the results
from more approximate methods. These comparisons show
Slonczewski’s hybrid theory is highly accurate for typical
experimental structures, but drift-diffusion shows system-
atic deviations. We have reported results of calculations
using the methods described in the present paper in earlier
papers [14,15].

The paper is organized as follows: Section 2 gives a gen-
eralized spin-dependent Boltzmann equation appropriate
for ferromagnetic systems; Section 3 describes in detail
the algorithm that solves the Boltzmann equation in a
spin valve magnetic multilayer system; Section 4 shows
the results of the Boltzmann method developed in Sec-
tion 3 applied to a spin valve. Section 5 gives a summary.
Readers who are not interested in the formalism can skip
directly to Section 4.

2 Generalized matrix Boltzmann equation

In non-magnetic materials, the spin independent
Boltzmann equation is

vk · ∂g(r,k)
∂r

− eE · vk
∂g(r,k)
∂εk

=
∫
dk′Pk,k′ [g(r,k′)

− g(r,k)], (1)

where g(r,k) is an electron distribution function that
depends on the spatial coordinate r and electron
wave-vector k. vk is the electron velocity, εk is its en-
ergy, E is the electric field, and we have ignored the mag-
netic field. Pk,k′ is the probability of electron scattering
from state k′ to state k. The Boltzmann equation is valid
only when the bulk properties vary slowly. It cannot be
used for abrupt interfaces or boundaries; later we describe
how to use boundary conditions to relate solutions of the
Boltzmann equation in different regions across the inter-
faces.

Transport in metals is dominated by the electrons near
the Fermi energy. The occupancy of states far from the
Fermi energy does not change and those states do not
contribute to the transport. This suggests the use of the
linearized Boltzmann equation in which the distribution

function is assumed to have the form

g(r,k) = f0(k) + f(r,k)δ(EF − εk), (2)

where f0 is the equilibrium distribution function. The
delta function restricts the wave vector to the Fermi sur-
face, |k| = kF for free electrons. With this approximation
for the distribution function, the Boltzmann equation be-
comes

vk · ∂f(r,k)
∂r

− eE · vk =
∫

FS

dk′Pk,k′ [f(r,k′) − f(r,k)],

(3)
where the integration over k′ is now a two-dimensional
integral restricted to the Fermi surface. The scattering
rate Pk,k′ has been rescaled. A delta function has been
factored out of each term. In the second term on the left
hand side, this delta function comes from ∂f0/∂ε.

For spin dependent magnetic materials, one needs a
spin dependent distribution function as well as a spin de-
pendent Boltzmann equation. When there is a natural
quantization axis, i.e., all electron spins are either parallel
(σ =↑) or anti-parallel (σ =↓) to the axis, an electron dis-
tribution function is separated into the distribution func-
tions for spin-up and spin-down electrons: f↑(r,k) and
f↓(r,k)

vk
σ · ∂f

σ(k)
∂r

− eE · vk
σ =

∫
FS

dk′P σ
k,k′ [fσ(k′) − fσ(k)]

+
∫

FS

dk′P sf
k,k′ [fσ′

(k′) − fσ(k)]. (4)

The r dependence of the distribution function has been
suppressed, and σ =↑, ↓ and σ �= σ′. Compared with equa-
tion (3), equation (4) has an additional spin flip scattering
term on the right hand side because the distribution func-
tion in equation (3) includes both spin types, while the
one in equation (4) is for only one spin type. Similar to
the definition of Pk,k′ in equation (3), P σ

k,k′ and P sf
k,k′ are

the probabilities of electron scattering from state k′ to
state k without and with spin flip. We assume that P sf

k,k′
is the same for spin flip in both directions, up to down or
down to up.

In a non-magnet, there is no natural quantization axis,
so it is convenient to use the axis of neighboring fer-
romagnetic layers if the magnetizations of those layers
are collinear. In this case, the scattering Pk,k′ is spin-
independent, so the substitutions f0 = (f↑ + f↓)/2 and
fz = (f↑ − f↓)/2 give the pair of equations

vk · ∂f
0(k)
∂r

−eE · vk =
∫

FS

dk′Pk,k′ [f0(k′) − f0(k)]

+
∫

FS

dk′P sf
k,k′ [f0(k′) − f0(k)],

vk · ∂f
z(k)
∂r

=
∫

FS

dk′Pk,k′ [fz(k′) − fz(k)]

−
∫

FS

dk′P sf
k,k′ [fz(k′) + fz(k)].

(5)
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In the first equation, spin flip scattering acts as another
form of non-flip scattering as far as the number accumu-
lation is concerned. In the second equation, the electric
field plays no role because it does not couple to the spin
accumulation. In the systems of interest here, the magne-
tizations are not collinear, so the spin axis in the distri-
bution function can vary with both r and k. However, the
generalization is straightforward. The second equation in
equation (5) is replicated for each of the other directions
in spin space, with z → x, y. The generalization can be
derived from a matrix form of the Boltzmann equation in
terms of the matrix distribution function

f̂(r,k) = f0σ0 + fxσx + fyσy + fzσz .

= Û(r,k)
[
f↑(r,k) 0

0 f↓(r,k)

]
Û †(r,k) (6)

where σx, σy and σz are Pauli spin matrices, σ0 is a 2× 2
identity matrix, and Û is a unitary rotation matrix. The
rotation matrix allows spin direction to point in an arbi-
trary direction over the Fermi surface and as a function of
position.

In strong ferromagnets, the rotation matrix in equa-
tion (6) is independent of the position on the Fermi surface
or k as in equation (4). This constraint is a consequence of
the large difference in the Fermi surfaces for majority and
minority electrons in strong ferromagnets. The constraint
arises because any transverse spin accumulation in the
electrons near the Fermi surface rapidly dissipates. The
transverse spins precess in the large exchange field and do
so at different rates because of the complicated Fermi sur-
faces. The precessing transverse components rapidly de-
phase with respect to each other, leaving no net transverse
moment.

3 Formal technique

Figure 1 shows a schematic picture of a spin valve – a mag-
netic multilayer structure where a thin-film non-magnet
(spacer) is sandwiched between two thin-film ferromag-
net (FM) layers. The latter connect to reservoirs with
non-magnetic leads. The main purpose of this paper is
to solve the Boltzmann equation numerically for the dis-
tribution function in such a spin valve structure. In reality,
the cross sectional dimensions of these structures are much
larger than typical layer thicknesses so that the transport
in the interior of the sample is more important than that
near the edges. The reservoirs have much larger cross sec-
tional areas and hence smaller resistances than the active
structures so that the transport is largely perpendicular to
the layers. This combination of features suggests a simple
model in which the layers are treated as translationally
invariant in plane so that properties only vary perpendic-
ular to the planes. Electrons move in all three directions,
but the net current and all variation is in the x-direction,
i.e. f̂(r,k) = f̂(x,k).

The calculation proceeds in eight steps: (3.1) discretize
the spin dependent Boltzmann equation using a numeri-
cal mesh of the Fermi surface; (3.2) solve the discretized

Fig. 1. Schematic view of a perpendicular spin valve structure.

Boltzmann equation for the eigensolutions in the non-
magnetic and ferromagnetic bulk; (3.3) use the eigenso-
lutions to construct the layer scattering matrix for each
bulk layer in the spin valve; (3.4) construct the interface
scattering matrix for each interface in the spin valve; (3.5)
connect the bulk and interface scattering matrices into a
single system-wide scattering matrix; (3.6) determine the
boundary conditions and apply them to the system-wide
scattering matrix to calculate the distribution function ex-
pansion coefficients; (3.7) calculate the distribution func-
tion values within the spin valve; and (3.8) calculate the
spin density (spin accumulation), spin current, and spin-
transfer torque using the distribution function.

3.1 Discretization of the Boltzmann equation

To discretize the Boltzmann equation, we need a numer-
ical mesh for the electron wave-vector k that can accu-
rately and simultaneously describe all Fermi surfaces for
both spin types and for all layers. A simple method for
choosing a mesh is as follows. Choose a uniform mesh in
the direction parallel to the interfaces (perpendicular to
x): kj

‖. For each material, there could be several points

on the Fermi surface that have the same kj
‖. We label

their longitudinal wave-vectors kn
x . A complete mesh for

the Fermi surface is ki = (kn
x ,k

j
‖). The mesh weights are

determined by the area on each Fermi surface associated
with kn

x . This mesh may converge slowly, so it may be nec-
essary to refine the kj

‖ mesh to include a higher density of
points. Let us assume one such mesh has sampling points
{ki}N

1 with weighting factor {wi}N
1 . Using this mesh, the

integration for any continuous function h(k) on the Fermi
surface can be discretized as:

∫
FS

h(k)dk =
N∑

i=1

wih(ki). (7)

We discretize the integrations in equation (4) using this
mesh. Assuming the system is one dimensional in x direc-
tion, we have a discretized form of the Boltzmann equa-
tion:

∂fσ
i

∂x
− eEx =

∑
j,σ′

[V̂ −1B̂]σσ′
ij fσ′

j , (8)

where the subscript i and j mean that k is evaluated at
ki or kj , for instance fσ

i = fσ(ki). The velocity matrix
V̂ and the scattering matrix B̂ are 2N × 2N matrices (N
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from ki index, 2 from spin index) with matrix elements

V σσ′
ij = vσx

i δσσ′
ij , (9)

Bσσ′
ij = wjP

σ
ijδσσ′ − δσσ′

ij

τσ
i

+ wjP
sf
ij (1 − δσσ′) − δσσ′

ij

τ sf
i

,

where δσσ′
ij = δijδσσ′ , 1/τσ

i =
∑

j wjP
σ
ij , is the spin-

dependent non-spin-flip scattering rate, and 1/τ sf
i =∑

j wjP
sf
ij is the spin flip scattering rate. See equation (4).

The matrix B̂ is singular because
∑

j,σ′ Bσσ′
ij = 0.

3.2 Solution of the Boltzmann equation in the bulk

In this section, we briefly summarize the results of refer-
ence [26] and then generalize them to treat systems with
non-collinear magnetizations. According to reference [26],
the Boltzmann equation, equation (8) can be solved by
breaking it into a particular equation

∑
j,σ′

[V̂ −1B̂]σσ′
ij fσ′

j = −eEx, (10)

and a homogeneous equation,

∑
j,σ′

{
δσσ′
ij

∂

∂x
− [V̂ −1B̂]σσ′

ij

}
fσ′

j = 0. (11)

The solution to the particular equation, equation (10) is

F σ
0 (x,ki) = −eEx

∑
j,σ′

[B̂−1V̂ ]σσ′
ij . (12)

Due to the singularity of B̂, B̂−1V̂ is not the inverse of
V̂ −1B̂. Instead, the inverse matrix is defined as in Sec-
tion 2.9 of reference [27] using a singular value decompo-
sition. Since the constant vector is perpendicular to the
null space, the solution is well defined. Physically, the so-
lution is the distribution function of the current in bulk
material. Since this distribution is well defined physically,
we expect it to be mathematically as well, if we have for-
mulated the problem correctly.

Most solutions to the homogeneous equation, equa-
tion (11) vary exponentially in space:

F σ
n (x,ki) = gσ

n(ki)eλnx with n ∈ [3, 2N ], (13)

where gσ
n(ki) = giσ

n and λn are the n-th eigenvector and
eigenvalue of V̂ −1B̂

∑
j,σ′

[V̂ −1B̂]iσ,jσ′gjσ′
n = λng

iσ
n . (14)

See the Appendix in reference [26] for more details. Since
the bulk is translationally invariant in x direction, half of
the eigenvalues λn are positive and half are negative. The
matrix V̂ −1B̂ is defective, which means that the degen-
erate zero eigenvalue only has one eigenvector. Because it

is defective, the homogeneous equation has two solutions
that do not have exponential form

F σ
1 (x,ki) = 1

F σ
2 (x,ki) = xF σ

1 (x,ki) +
∑
j,σ′

[B̂−1V̂ ]σσ′
ij . (15)

which can be verified by plugging them back
in equation (11).

Physically, F1 is the solution describing a uniform shift
of the chemical potential and F2 describes a current car-
rying solution having a spatially varying density and a
associated uniform diffusion current. The rest of eigenso-
lutions, equations (12) and (13), are exponential solutions
that are necessary near interfaces. These solutions are not
allowed in a uniform bulk because they diverge in one
direction. Together, these solutions describe arbitrary so-
lutions of the Boltzmann equation in each layer.

Both the particular solution F0 and the homoge-
neous solution F2 are current carrying because of the
ki-dependence of their summation terms. But, they de-
scribe current associated with different processes. F0 de-
scribes the current due to the electric field, and F2 de-
scribes the current due to density gradients. Formally,
F2 = A(Exx − F0), where A is a constant, so F0 plus
the electric field Ex can be interchanged with F2. Compu-
tationally, since we work with uniform current, we solve
everything with Ex = 0 and no F0 and work with F2. Once
we find the coefficient of F2, the physical solution is the
corresponding F0 and Ex. That is, we solve the problem
as if the uniform current was exclusively due to diffusion
with no electric field and then reinterpret the charge ac-
cumulation as an electric potential and set the charge ac-
cumulation to zero. This interpretation makes sense due
to the short screening length in metals.

There is a natural quantization axis in a ferromagnet
defined by its magnetization. The distribution function is
described by the eigensolutions in equation (15):

f̂(x,ki) = f↑σ↑ + f↓σ↓

fσ =
2N∑
n=1

ασ
nF

σ
n (x,ki) ≡ F σ · ασ. (16)

Here, σ↑ = (1/2)(I + σz), σ↓ = (1/2)(I − σz), and the ασ
n

are the expansion coefficients.
In a non-magnet, there is no natural quantization axis,

so we write the distribution function as in equation (6). We
construct a different basis set F s

n, s = 0, x, y, z from F ↑,↓
n

for the non-magnet. First, we know that the eigenvectors
F σ

n (x,ki) in equation (13), and (15) break into separate
eigenvectors for charge transport with F ↑

n = F ↓
n and spin

transport with F ↑
n = −F ↓

n . For instance, the eigenvectors
with n = 1 and 2 correspond to charge transport because
F ↑

1,2 = F ↓
1,2. In general, half of the eigenvectors (assume

for the first half: n ∈ [1, N ]) corresponds to the charge
transport; the other half (for the second half: n ∈ [N +
1, 2N ]) is for the spin transport. Therefore, the basis set
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in a non-magnet can be constructed as:

F s=0
n (x,ki) =

1
2

[
F ↑

n(x,ki)+F ↓
n(x,ki)

]
n∈ [1, N ],

(17a)

F s=x,y,z
n (x,ki) =

1
2

[
F ↑

n+N (x,ki)−F ↓
n+N (x,ki)

]
n∈ [1, N ].

(17b)

Thus, in the non-magnet layers, the general solution for
the distribution function is

f̂(x,ki) = f0σ0 + fxσx + fyσx + fzσz

fs =
N∑

n=1

αs
nF

s
n(x,ki) ≡ F s · αs, (18)

where s = 0, x, y, z, and αs
n are expansion coefficients.

Equation (17) tells us that fx, fy, and fz share the same
set of eigenvectors. This is because the Boltzmann solution
does not depend on the choice of spin quantization axis in
a non-magnet.

3.3 Layer scattering matrix

The eigensolutions are used to construct a scattering ma-
trix which relates the boundary values of each layer. Fig-
ure 2 shows a schematic picture of a spin valve, where
lead/FM/spacer/FM/lead are labeled layer 1 to layer 5,
and x0,1,2,3,4,5 denotes the x coordinate of each inter-
face. In equations (16) and (18), we expand the distri-
bution function in each layer using a set of eigensolutions.
From these expansions we construct the (layer) scatter-
ing matrix for layer m, Sm, which relates the incoming
electron distribution functions f in

m,L/R and the outgoing
ones fout

m,L/R at the left (L) and right (R) sides of the
layer m (Fig. 2):

[
fout
m,L

fout
m,R

]
= Sm

[
f in
m,L

f in
m,R

]
. (19)

Here, the matrices in the ferromagnet (m = 2, 4) and
non-magnet(m = 1, 3, 5) are respectively

[
f in

m,L

]T
=

[
f in,↑

m,L, f
in,↓
m,L

]
[
f in

m,L

]T
=

[
f in,0

m,L, f
in,x
m,L, f

in,y
m,L, f

in,z
m,L

]
, (20)

and f in,↑
m,L = f↑

m(xm−1,k+
i ), and f in,↑

m,R = f↑
m(xm,k−

i ), etc.
k±

i is the electrons’ wave-vector on the Fermi surface with
the (+/−) superscript indicating whether the electorn is
right (+) or left (−) going. The superscripts “in” and
“out” denote electrons going into or out of the layer. The
definition in equation (20) generalizes in a straightforward
manner for “R” and “out”.

From equation (16), we can express the distribution
function as fσ

m(x,ki) = F σ(x,ki)·ασ in the ferromagnetic

layers (m = 2, 4), then

[
fout

m,L

fout
m,R

]
=

⎡
⎢⎢⎢⎢⎣

F ↑(xm−1,k−
i )

F ↓(xm−1,k−
i )

F ↑(xm,k+
i )

F ↓(xm,k+
i )

⎤
⎥⎥⎥⎥⎦ · α ≡ Fout

m · α

[
f in

m,L

f in
m,R

]
=

⎡
⎢⎢⎢⎢⎣

F ↑(xm−1,k+
i )

F ↓(xm−1,k+
i )

F ↑(xm,k−
i )

F ↓(xm,k−
i )

⎤
⎥⎥⎥⎥⎦ · α ≡ Fin

m · α, (21)

where Fin
m and Fout

m are both 2N × 2N square matrices.
Therefore, equation (19) implies that the layer scattering
matrix for ferromagnetic layers (m = 2, 4) is

Sm = Fout
m · [Fin

m

]−1
. (22)

The layer scattering matrix for non-magnetic layers (m =
1, 3, 5) is constructed in a similar way using equation (18)
as the expansion and equation (20) for m = 1, 3, 5.

3.4 Interface scattering matrix

Using the layer scattering matrix, we are able to relate
the distribution function values at the two sides of a bulk
layer. Next, we find an interface scattering matrix which
connects the distribution functions across an interface.
Right at the interface, the Boltzmann equation is not valid
because the material properties vary rapidly. The distri-
bution functions across the interface are related through
the scattering matrix for the electron wave-functions at
the interface.

Like the layer scattering matrix in equation (19), the
interface scattering matrix R relates the incoming to the
outgoing distribution functions. If the interface is specular,
when electrons scatter from the interface, the component
of the wave vector that is parallel to the interface is con-
served. In this case, the interface scattering matrix is block
diagonal, with non-zero elements only for those states with
the same parallel wave vector. On the other hand, de-
fect scattering at the interface couples states with differ-
ent parallel wave vectors and the interface scattering ma-
trix becomes dense. In the present work, we neglect defect
scattering at the interfaces for simplicity. Interfacial defect
scattering has been considered by several authors [28–30].
Xia et al. [30] treated interdiffusion at Co/Cu interfaces
with first principles calculations and found that such de-
fects caused only minor changes in the average transport
properties for these interfaces.

Consider an isolated interface between a non-magnet
and a ferromagnet (NM/FM) and choose the spin quan-
tization axis to be parallel to the magnetization of the
ferromagnet. The interface between Lead 1 and FM2 in
Figure 2 is such an interface if those two materials were
extended to infinity. Suppose the wave-function for an
electron on the Fermi surface in the corresponding NM is



420 The European Physical Journal B

SP 3 FM 4
R

es
er

vo
ir R

eservoir
FM 2 Lead 5Lead 1

M m

S1 S2 S3 S4 S5R1 R2 R3 R4

f in
1,L

f out
1,L f in

1,R

f out
1,R f in

2,L

f out
2,L f in

2,R

f ou t
2,R f in

3,L

f out
3,L f in

3,R

f out
3,R f in

4,L

f ou t
4,L f in

4,R

f out
4,R f in

5,L

f out
5,L f in

5,R

f ou t
5,R

x

x5x4x3x2x1x0
x

z

x’�

z’�

Fig. 2. Scattering matrices. The center of the figure lists the incoming and outgoing distribution functions at each of the layers.
The top lists the layer, Sn, and interface, Rn scattering matrices that relate the distribution functions.

φ(ki), which is orthonormal to other states on the Fermi
surface: 〈φ(ki)|φ(kj)〉 = δij . The wave-function for an
electron on the Fermi surface in the FM is ψσ(ki), which
is also orthonormal to other states on the Fermi surface:
〈ψσ(ki)|ψσ′ (kj)〉 = δijδσσ′ .

In the non-magnet, the wave-function for an electron
moving toward the interface with spin pointing in an arbi-
trary direction is written as a linear combination of spin-
up and spin-down components:

Φin =
[
aφ(k+

i )
bφ(k+

i )

]
, (23)

where a and b are the coefficients of the up and down
spinor components. This incident state is scattered at the
NM/FM interface, and the scattered states are

Φref =
∑

j

[
aRNN,↑

ij φ(k−
j )

bRNN,↓
ij φ(k−

j )

]
for x < 0,

Φtr =
∑

j

[
aTNF,↑

ij ψ↑(k+
j )

bTNF,↓
ij ψ↓(k+

j )

]
for x > 0, (24)

where RNN,σ
ij and TNF,σ

ij are the reflection and transmis-
sion amplitudes for electron from ki to kj for spin-up and
spin-down electrons: σ =↑, ↓.

The 2 × 2 matrix distribution function is then defined
by the outer product of the spinor coefficients. For in-
stance, for the incident state

f̂in =
[
aa∗ ab∗
ba∗ bb∗

]
. (25)

Straightforward algebra reveals

f̂ref(k−
j ) = RNN

ij

†
f̂in(k+

i )RNN
ij

f̂tr(k+
j ) = TNF

ij

†
f̂in(k+

i )TNF
ij , (26)

where the reflection matrix (NM to NM) and transmission
matrix (NM to FM) are

RNN
ij =

[
RNN,↑

ij 0
0 RNN,↓

ij

]

TNF
ij =

[
TNF,↑

ij 0
0 TNF,↓

ij

]
. (27)

Considering the electrons incident onto the interface
from both sides of the interface, the scattering relation-
ship equation (26) becomes

f̂N(k−
j ) =

∑
i

RNN
ij

†
f̂N(k+

i )RNN
ij +

∑
i

TFN
ij

†
f̂F(k−

i )TFN
ij ,

(28a)

f̂F(k+
j ) =

∑
i

RFF
ij

†
f̂F(k−

i )RFF
ij +

∑
i

TNF
ij

†
f̂N(k+

i )TNF
ij .

(28b)

The matrix forms of the distribution functions f̂ in equa-
tion (28) are expanded using σ↑,↓ in the FM or Pauli ma-
trices σ0,x,y,z in the NM as in equation (6). We represent
the distribution functions by their expansion components
f↑,↓ in the FM and f0,x,y,z in the NM as in equation (20).
After this transformation, the scattering formula equa-
tion (28) is written as

[
f in
N

f in
F

]
≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0
N(x0,k−

i )

fx
N(x0,k−

i )

fy
N(x0,k−

i )

fz
N(x0,k−

i )

f↑
F(x0,k+

i )

f↓
F(x0,k+

i )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0
N(x0,k+

i )

fx
N(x0,k+

i )

fy
N(x0,k+

i )

fz
N(x0,k+

i )

f↑
F(x0,k−

i )

f↓
F(x0,k−

i )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ R

[
fout
N

fout
F

]
,

(29)
where R is the interface scattering matrix for the distri-
bution functions across the interface, and the matrix el-
ements in R are obtained from the scattering matrices
R and T in equation (27). Note the apparent reversal
of “in” and “out” in equation (29) compared to that in
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equation (19). The directions in and out are defined with
respect to the layers, rather than the interfaces and the
incoming distribution for one of the layers is the outgoing
distribution for one of the interfaces.

3.5 System scattering matrix

With all the layer and interface scattering matrices
S1,2,3,4,5 and R1,2,3,4 (see Fig. 2), we are ready to con-
struct a system-wide scattering matrix T that relates the
incoming and outgoing distribution functions near the left
and right reservoirs. The scattering matrix T is obtained
by joining all the layer scattering matrices and interface
scattering matrices in order: T = S1−R1−S2−R2−S3−
R3 − S4 − R4 − S5.

The joining procedure is as follows. First we join S1

to R1 (see Fig. 2), where S1 is the layer scattering ma-
trix that covers the interval [x+

0 , x
−
1 ] (layer 1), and R1 is

the interface scattering matrix that covers [x−1 , x
+
1 ] (the

interface at x1):[
fout
1,L

fout
1,R

]
=

[
S

LL
1 S

LR
1

S
RL
1 S

Rb
1

] [
f in
1,L

f in
1,R

]

[
f in
1,R

f in
2,L

]
=

[
R

LL
1 R

LR
1

R
RL
1 R

Rb
1

][
fout
1,R

fout
2,L

]
. (30)

Here we have subdivided the distribution vectors (dis-
cretized functions) into two subvectors for the values on
the left (L) and right (R). The S and R matrices are corre-
spondingly subdivided into four submatrices labelled LL,
LR, RL, and RR, where, for example, the LR submatrix
connects incoming values on the right to outgoing values
on the left. We denote the joint scattering matrix by Tli,
where the subscript “l” denotes a lead, “i” denotes an
NM/FM or FM/NM interface, “f” denotes a ferromagnet,
and “n” denotes the non-magnetic spacer layer. Tli covers
[x+

0 , x
+
1 ] and relates f in/out

1,L and f in/out
2,L :

[
fout
1,L

f in
2,L

]
= Tli

[
f in
1,L

fout
2,L

]
. (31)

By eliminating the intermediate distribution functions
f

in/out
1,R in equation (30), we have

Tli =

[
T

LL
T

LR

T
RL

T
RR

]
, (32)

where

T
LL = S

LL
1 + S

LR
1 R

LL
1 (1 − S

RR
1 R

LL
1 )−1

S
RL
1

T
LR = S

LR
1 [1 + R

LL
1 (1 − S

RR
1 R

LL
1 )−1

S
RR
1 ]RLR

1

T
RL = R

RL
1 (1 − S

RR
1 R

LL
1 )−1

S
RL
1

T
RR = R

RR
1 + R

RL
1 (1 − S

RR
1 R

LL
1 )−1

S
RR
1 R

LR
1 . (33)

The scattering matrices described here and the method
of joining them is more complicated than approaches us-
ing transfer matrices, which relate the boundary values

from one side to the other rather than outgoing to incom-
ing boundary values. However, transfer matrix approaches
become unstable as layers become thick and the present
method does not.

Using the same procedure as above we can join Tli with
S2 and then with R2 to have a scattering matrix Tlifi which
covers [x+

0 , x
+
2 ]. We continue to construct Tlif , Tlifi, Tlifin,

Tlifini, Tlifinif , Tlifinifi, and Tlifinifil. When coming to the the
spacer layer, the eigensolutions and the scattering matrix
S3 use z′-axis instead of the z-axis (which is used for Tlifi)
as the spin quantization axis (see Fig. 2). Therefore, we
have to make an axis rotation at the spacer layer when
joining Tlifi with S3.

The distribution functions that Tlifi and S3 relate are:
[
fout
1,L

f in
3,L

]
= Tlifi

[
f in
1,L

fout
3,L

]

[
fout′
3,L

fout′
3,R

]
= S3

[
f in′
3,L

f in′
3,R

]
. (34)

The primed distribution functions are written using the
z′-axis as the spin quantization axis. To join Tlifi with S3,
we write f in/out

3,L in terms of f in/out′

3,L : f in/out
3,L = Û†f in/out′

3,L .
Û is the component representation [equation (20)] of the
unitary rotation matrix Û in equation (6): f̂ ′ = Û f̂ Û † ⇒
f ′ = Ûf . Then
[

fout
1,L

Û†f in′
3,L

]
= Tlifi

[
f in
1,L

Û†fout′
3,L

]
=⇒

[
fout
1,L

f in′
3,L

]
= T

′
lifi

[
f in
1,L

fout′
3,L

]
,

(35)
with the rotated scattering matrix

T
′
lifi =

[
1 0

0 Û

]
Tlifi

[
1 0

0 Û†

]
. (36)

T
′
lifi is joined with S3 using the same procedure as in equa-

tion (32) and becomes Tlifin. Continuing by joining Tlifin

to R3, S4,R4 and S5 gives a system wide scattering ma-
trix T = Tlifinifil that relates the distribution functions
near the left reservoir and the right reservoir:
[
f1(x0,k−

i )

f ′
5(x5,k+

i )

]
≡

[
fout
1,L

fout′
5,R

]
= T

[
f in
1,L

f in′
5,R

]
≡ T

[
f1(x0,k+

i )

f ′
5(x5,k−

i )

]
.

(37)
Equation (37) is a condition on the boundary values of
the distribution functions for an arbitrary solution of the
Boltzmann equation in the multilayer.

In the case that the two leads (layer 1 and layer 5) are
semi-infinite, we need a system scattering matrix T that
covers the interval [x−1 , x

+
4 ]:

[
f1(x1,k−

i )

f ′
5(x4,k+

i )

]
= T

[
f1(x1,k+

i )

f ′
5(x4,k−

i )

]
. (38)

Equations (37) and (38) each have a total of 8N unknown
coefficients in the expansions of f1 and f5 but only 4N
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equations. To solve this problem, we study the bound-
ary conditions, which apply restrictions on the distribu-
tion functions f1 and f5, and so reduce the number of
unknowns in the expansions.

3.6 Boundary conditions

By examining the properties of the leads and reservoirs,
we can restrict the form of the distribution functions f1
and f5 in the leads, such that the number of unknown co-
efficients in the expansions equals the number of equations
in equation (37) or (38). Thus, we can uniquely determine
the distribution functions from equations (37) and (38).
We treat semi-infinite leads and finite leads differently, and
separate the discussion into two cases: (1) the leads are
semi-infinite: the left/right lead extends to the left/right
infinitely; and (2) both leads have finite length before con-
necting to reservoirs.

3.6.1 Semi-infinite leads

If the leads are semi-infinite, the distribution function f1
in the left lead (layer 1) includes only the exponential
eigensolutions with λn > 0. Then from equation (18), we
have

f0
1 (x,ki) = α0

1F
0
1 (x,ki)+F 0

2 (x,ki)+
N∑

n=3
λn>0

α0
nF

0
n(x,ki),

(39a)

fx,y,z
1 (x,ki) =

N∑
n=1

λn+N >0

αx,y,z
n F x,y,z

n (x,ki). (39b)

We set α0
2 = 1 to fix the current, because F2 is the current

carrying term. Due to the x-translational invariance of the
exponential eigensolutions, half of the eigenvalues λn are
positive and half are negative for charge transport and
spin transport, respectively. Therefore there are 2N un-
known α0,x,y,z

n in total, N/2 for each component of 0, x, y,
and z.

Similarly, the distribution function f ′
5 in the right lead

(layer 5) includes only the exponential eigensolutions with
λn < 0:

f ′
5
0(x,ki) = β0

2F
0
2 (x,ki) +

N∑
n=3

λn<0

β0
nF

0
n(x,ki), (40a)

f ′
5
τ (x,ki) =

N∑
n=1

λn+N <0

βτ
nF

τ
n (x,ki), (40b)

where τ = x, y, z. The choice β0
1 = 0 sets the potential

at the right lead to be zero. Equation (40) also has 2N
unknowns, βτ

n, τ = 0, x, y, z, in total.

Plugging equations (39) and (40) into equation (38),
we have 4N equations with 4N unknowns, the expansion
coefficients αn’s and βn’s can be solved. This gives the dis-
tribution functions in the left and right leads. The distri-
bution function values inside the spin valve are calculated
from the boundary values using the appropriate scattering
matrices, as will be shown later.

3.6.2 Finite leads

In actual spin valve samples, the leads are usually short,
after which the sample connects to essentially bulk ma-
terial, here referred to as reservoirs. Electrons that enter
the reservoir are much less likely to scatter back into the
sample than to stay in the reservoir until they are ther-
malized. This means that the reservoirs behave as perfect
absorbers. The distribution of the electrons coming out
of the reservoir is characteristic of the bulk, independent
of the distribution of electrons coming in. The connec-
tion between the reservoirs and leads has been studied in
more detail by Berger [31] and Hamerle et al. [32]. When
the leads have finite length and are connected to electron
reservoirs, the exponential eigensolutions have no singu-
larities and all of them should be included. In such a case,
the form of the distribution functions is constrained by
the following properties of a reservoir: the electrons leav-
ing the reservoir have a bulk-like distribution function and
the electrons with arbitrary distribution function can be
absorbed by the reservoir. Based on these two properties of
reservoirs, we propose that the distribution function near
the reservoirs should satisfy: (1) for the electrons going
from the reservoir to the lead, the distribution function is
bulk-like, namely f in

1,L and f in′
5,R are spin independent and

have contributions only from F 0
1 and F 0

2 in equation (17);
(2) for the electrons going from the lead to the reservoir,
the distribution function has whatever structure it wishes,
namely fout

1,L and fout′
5,R have contributions from all F 0,x,y,z

n .
To determine the form of the distribution functions

near the reservoirs, let us first use F 0,x,y,z
p to denote the

eigensolutions with positive eigenvalues: λp > 0; and use
F 0,x,y,z

q to denote the eigensolutions with negative eigen-
values: λq < 0. We construct a new set of basis functions
G0,x,y,z

n using linear combinations of the old basis func-
tions F 0,x,y,z

n such that,

G0,x,y,z
1,2 = F 0,x,y,z

1,2 , (41a)

G0,x,y,z
p (x0,k+

i ) = 0, (41b)

G0,x,y,z
q (x5,k−

i ) = 0. (41c)

Essentially, Gp is obtained by using the linear combina-
tion of F1(x0,k+

i ) and Fq(x0,k+
i ) to cancel Fp(x0,k+

i ),
and similarly Gq is obtained by using F1(x5,k−

i ) and
Fp(x5,k−

i ) to cancel Fq(x5,k−
i ).

G1,2 and Gp form the basis for the electrons that have
bulk-like right-going behavior at x = x0, and G1,2 and Gq

form the basis for electrons that have bulk-like left-going
behavior at x = x5. The distribution functions that satisfy
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Fig. 3. Back-propagation matrices.

the requirements (1) and (2) in the leads are constructed
as the following:

f0
1 (x,ki) = α0

1G
0
1(x,ki) +G0

2(x,ki) +
∑

p

α0
pG

0
p(x,ki),

(42a)

fx,y,z
1 (x,ki) =

∑
p

αx,y,z
p Gx,y,z

p (x,ki), (42b)

f ′0
5(x,ki) = β0

2G
0
2(x,ki) +

∑
q

β0
qG

0
q(x,ki), (42c)

f ′x,y,z
5 (x,ki) =

∑
q

βx,y,z
q Gx,y,z

q (x,ki). (42d)

In these equations, α0
2 = 1 fixes the current, and

β0
1 = 0 fixes the chemical potential at the right bound-

ary to be zero. Since the indexes p and q each take
(N − 2)/2 values for the 0-component and N/2 values for
the {x, y, z}-components, the total number of unknown
coefficients in equation (42) is 4N . Therefore, by plug-
ging equation (42) into equation (37), the coefficients
αs

n, β
s
n can be determined.

3.7 System distribution function

Once we have the distribution function values at the
boundaries, either near the lead/FM interface for the
semi-infinite lead case or near the reservoir for the finite
lead case, we can calculate the distribution function val-
ues everywhere inside the spin valve using the scatter-
ing matrices. For example, assume the scattering matrices
S

L covers the interval [x+
0 , x

−
3 ] and S

R covers the interval
[x−3 , x

−
5 ]:

[
fout
1,L

fout′
3,R

]
=

[
S

L
LL S

L
LR

S
L
RL S

L
RR

][
f in
1,L

f in′
3,R

]

[
f in′
3,R

fout′
5,R

]
=

[
S

R
LL S

R
LR

S
R
RL S

R
RR

][
fout′
3,R

f in′
5,R

]
. (43)

f
in/out′

3,R can be solved from equation (43), but the equa-
tions in equation (43) are redundant, so we choose the half
of the equations that use the incoming boundary values
rather than the outgoing ones, i.e.,

fout′
3,R = S

L
RLf

in
1,L + S

L
RRf

in′
3,R, (44a)

f in′
3,R = S

R
LLf

out′
3,R + S

R
LRf

in′
5,R. (44b)

From these equations, we can calculate f in/out′

3,R . Similarly,
we can calculate the distribution function value elsewhere
using a different pair of scattering matrices S

L and S
R.

3.8 Transport properties

With the distribution functions in hand, it is straightfor-
ward to calculate transport properties h(k) by integrating
over the whole Fermi surface:

h =
∫

FS

h(k)dk. (45)

Using equation (7), the integrations for spin density and
spin current are discretized as

spin density: ns
m(x) =

N∑
i=1

wif
s
m(x,ki), (46a)

spin current: js
m(x) =

N∑
i=1

wivif
s
m(x,ki), (46b)

where s = 0, x, y, z for m = 1, 3, 5 (non-magnetic layers),
and s =↑, ↓ for m = 2, 4 (ferromagnetic layers). The spin
current at x = x−3 is written in the x′-z′ frame:

Q(x−3 ) = jx
3 (x−3 )x̂′ + jz

3 (x−3 )ẑ′, (47)

where the jz
3 (x−3 ) is the longitudinal piece parallel to

the right FM layer’s magnetization (z′ direction), and
jx
3 (x−3 ) is the piece perpendicular to z′-axis. From ref-

erence [11] we know that the perpendicular spin current
is absorbed at the NM/FM interface, therefore the spin-
transfer torque acting on the right FM layer is

Nst = jx
3 (x−3 )x̂′. (48)

4 Applications

In this section, we apply our numerical method to calcu-
late the spin-transfer torque acting on the right ferromag-
netic layer of a model spin valve. We compare the results
with equivalent calculations using the drift-diffusion ap-
proach and Slonczewski’s hybrid theory. First, we describe
the approximations we make to simplify the calculation
so as to focus on the differences between the different ap-
proaches.

4.1 Approximations and their rationale

Compared with the drift-diffusion method and circuit the-
ory, the most important feature of the Boltzmann method
is its treatment of electrons in the bulk moving in differ-
ent directions. In circuit theory, the average over the Fermi
surface, the spin accumulation, is used to characterize the
electrons inside that node (here a layer). In this treatment
all of the electrons inside a node are effectively aligned.
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In the drift diffusion approximation, the distribution is
modeled by its first moment, the spin accumulation, and
second moment with respect to velocity, the spin current.
This allows for greater flexibility in describing the distri-
bution function, but clearly if higher moments are impor-
tant, neglecting them will lead to errors. In a Boltzmann
equation treatment of the transport the distribution func-
tion is allowed its full flexibility.

To study the different approaches we consider a simple
model in which we ignore the actual shape and/or size of
the Fermi surfaces and assume that the Fermi surfaces in
both the non-magnet and the ferromagnet (both spin-up
and spin-down) are perfectly spherical and are the same
size. We use different mean free paths to distinguish the
differences between the electrons in the non-magnet and
the ferromagnet: lN for non-magnet, l↑,↓

F for spin-up and
spin-down electrons in ferromagnet. The choice of iden-
tical and spherical Fermi surfaces makes finding a wave
vector mesh particularly simple. Since the problem is az-
imuthally symmetric, there are no contributions to the
distribution function that are not azimuthally symmet-
ric so that only polar variation need be considered. We
choose Gauss-Legendre sampling for the polar direction
with typically 40 mesh points.

For the interface scattering coefficients in equa-
tion (27), we treat the case of ideal interfaces with no de-
fect scattering. Consider an electron with wave-vector kx

incident on an interface. With the Fermi surface assump-
tion made in the previous paragraph, the wave-vectors for
the reflected and transmitted electrons are −kx and kx, re-
spectively. The matrix elements of the reflection and trans-
mission matrices R and T in equation (27) are calculated
in reference [33]. To allow for finite and spin-dependent
interface resistance in the equal-Fermi-surface model, we
assume δ-function scattering at the interface to give the
following transmission and reflection probabilities:

|RNN,σ
ij |2 = |RFF,σ

ij |2 =
ασ

ασ + (kx
i )2

δkx
i ,−kx

j
, (49a)

|TNF,σ
ij |2 = |TFN,σ

ij |2 =
(kx

i )2

ασ + (kx
i )2

δkx
i ,kx

j
, (49b)

where σ =↑ or ↓, and kx
i is a discretization of kx. The

parameter ασ is proportional to the square root of the
strength of the δ-function-like interface potential. This
can be read off from the horizontal axis in Figure 1 of
reference [33] using experimental spin dependent interface
resistance data.

We also use the relaxation-time approximation: P σ
ij =

P σ = AFS/τσ and P sf
ij = P sf = AFS/τsf , where AFS

is the area of the Fermi surface. In this limit, the cur-
rent carrying eigensolution F σ

2 in equation (15) reduces
to F σ

2 (x,ki) = x + vx
i l

σ/vF , where lσ is the mean free
path for different spins and vF is the Fermi velocity.

Using the algorithm described above in Section 2
and the approximations discussed above (equal, spherical
Fermi surfaces), we calculated the spin-transfer torque for
the spin valve shown in Figure 1. For the rest of this pa-
per, we assume the non-magnetic and ferromagnetic lay-
ers are composed of Cu and Co, respectively. The results

are quite similar if Cu and Co are replaced by other non-
magnetic and ferromagnetic metal. The input values in
the Boltzmann calculation are listed in Table 1.

4.2 Results and comparisons

In this section we test the drift-diffusion approach and
Slonczewski’s hybrid theory by comparing the results
with those found with the Boltzmann equation. The spin-
transfer torque acting on the right ferromagnet layer (m
layer in Fig. 1) in a spin valve can generally be written in
the following form [1]:

NR
st(θ) = η(θ)

�I

2e
m̂ × (m̂ × M̂), (50)

where the cross product has magnitude of sin θ. In Slon-
czewski’s hybrid theory [15,25],

η(θ) =
q+

A+B cos θ
+

q−
A−B cos θ

. (51)

The parameters A,B, and q± are calculated using the
material parameters and geometries as shown in refer-
ence [15]. An equivalent spin-transfer torque formula was
obtained by Manschot, et al. [36], independently.

As discussed above in Section 4.1, the drift diffusion
approximation assumes that the distribution function has
a simple form consisting of a uniform expansion and a con-
tribution proportional to the velocity. Thus, we can expect
that the drift-diffusion approximation breaks down when
the variation of the distribution function over the Fermi
surface is more complicated. There are three situations
where more complicated behavior is introduced. The first
is when the transmission through the interface depends
strongly on wave vector as is typically the case [37]. In the
immediate vicinity of the interface, the wave-vector depen-
dence of the transmission gives the distribution function
a complicated variation over the Fermi surface. This vari-
ation includes contributions that decay on the order of
the mean free path, see equation (13). If the interfaces are
separated by more than this length, the strong variation
decays between the interfaces, and the two approaches can
be brought into agreement through an appropriate choice
of an effective interface resistance in the drift diffusion
approach. However, when the interfaces are closer, the in-
teraction of these exponential contributions between in-
terfaces complicate the transport. Evaluating the impor-
tance of these effects requires a calculation using realistic
band structures, which is beyond the present calculations.
We instead evaluate the other two situations where such
difficult calculations are not necessary.

The second situation in which the distribution function
has a complicated angular dependence is when the spacer
layer is thin compared to its mean free path and the mag-
netizations are not collinear. Figure 4 compares the an-
gular dependence of the torque calculated with the drift
diffusion approximation to the torques calculated with the
Boltzmann equation. In these calculations, the reflection
at the interfaces has been set to zero so that the compli-
cations described in the previous paragraph do not play
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Table 1. Material parameters used in the Boltzmann calcula-
tion.

Parameter Material Value Units Reference
l Cu 110 nm [14]

lsf Cu 450 nm [34]
l↑ Co 16.25 nm [14]
l↓ Co 6.01 nm [14]
lsf Co 59 nm [35]
α↑ Co/Cu 0.051 [14]
α↓ Co/Cu 0.393 [14]

Fig. 4. Spin-transfer torque at the right interface of the spacer
layer in a spin valve with semi-infinite leads. Solid curves are
calculated from the Boltzmann equation, dashed curves are
from the drift-diffusion method. The two insets show the an-
gular dependence of the torque for two specific thicknesses,
t3 = 10 nm (a) and 3000 nm (b). The main panel shows the
thickness dependence of the maximum values as a function of
angle for the two approaches. The legend gives the thicknesses
of the layers (inf = infinite).

a role. Inset (b) in Figure 4 shows that the torques agree
when the spacer layer is very thick, and inset (a) shows
that when they are thin, there are significant differences.
The main panel shows the variation of the maximum of
the torque curves as a function of thickness. The difference
between the curves gives the corrections due to the com-
plicated angular dependence of the distribution function.

The torques decrease with thickness for two reasons.
The large length scale decay is set by the spin diffusion
length. When the layer is thicker than its spin diffusion
length, spin-flip scattering leads to a significant decrease
in the polarization of the current that crosses from one
side to the other. For spacer layers thinner than their spin
diffusion length, but longer than their mean free paths,
the polarization of the current depends on the ratio of the
effective polarized resistance to the effective unpolarized
resistance. For these structures, in which the ferromag-
netic layers are thicker than their spin diffusion length,
the polarization of the current decays roughly like one
over the thickness of the spacer layer.

The final situation, in which the drift-diffusion ap-
proach is not adequate to describe the full angular de-

Fig. 5. Spin-transfer torque at the right interface of the spacer
layer in a spin valve. The left panel is calculated using the
Boltzmann equation, the right panel using the drift-diffusion
method. The legend gives the thicknesses of the layers.

pendence of the distribution function, is at the interfaces
between the leads and the reservoirs. Typically, in the
drift-diffusion approach, the spin accumulation is set to
zero at this point and the spin current is allowed to vary.
The argument is roughly that the large total density of
states there compared to in the leads forces the spin accu-
mulation to be small. In Section 3.6.2, we described how
the greater flexibility available in the Boltzmann equa-
tion allows the implementation of boundary conditions
that treat the reservoir as an absorber. In Figure 5, we
show the differences that can result from the differences
in the boundary conditions. Both calculations show that
the angular variation in the torque depends strongly on
the length of the leads. However, the Boltzmann equation
results are not as sensitive as those from the drift dif-
fusion calculation. In fact, the drift diffusion calculation
gives both the parallel and antiparallel states as unstable
for an asymmetric enough junction.

The results described above show that the drift dif-
fusion approach does not work when the layers are thin.
Slonczewski [15,25], developed a simple hybrid theory that
overcomes some of these difficulties. In particular, it treats
the left going and right going electrons in the spacer layer
separately. This overcomes the errors illustrated in Fig-
ure 4. The theory then treats the transport in the rest
of the system with an approach closely related to circuit
theory [21,22]. The result is an analytic expression for
the torque, equation (51). Here, we compare this hybrid
theory with the Boltzmann equation to test its validity.
In addition, we explore the systematic behavior of the
spin-transfer torque as a function of the spin valve ge-
ometry. Figure 6 shows the angular dependence of the
spin-transfer torque acting on the right FM (Co) layer for
a spin valve with geometry:

Cu(5 nm)/Co(40 nm)/Cu(t3)/Co(1 nm)/Cu(180 nm).

The spacer layer thickness t3 varies from 1 nm to 160 nm.
The magnitude of the spin-transfer torque reduces as
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Fig. 6. Spin-transfer torque at the right interface of
the spacer layer in a spin valve with layer thicknesses
5 nm/40 nm/t3/1 nm/180 nm with t3 = 1 nm, 80 nm, and
160 nm. The solid curves are calculated from the Boltzmann
equation. Solid circles are calculated by from the hybrid the-
ory. The latter do not depend on t3. The inset shows the t3
dependence of 1/η(θ) for θ = 0◦ and 180◦ for this geometry.
The legend gives the thicknesses of the layers.

spacer layer thickness t3 increases. Features of the torque
are discussed in reference [15].

In Slonczewski’s hybrid theory [15,25], scattering in
the spacer layer is ignored. This means the spacer layer is
treated as a thin film. In the case t3 = 1 nm, the spacer
layer thickness satisfies the condition of the hybrid the-
ory. If we fit the spin-transfer torque curve calculated from
the Boltzmann equation using the spin-transfer torque for-
mula equation (50) from the hybrid theory (see Fig. 6 for
the fit), we find that the fitted interface resistance values
agree with the experimental values within 15%. This is
very good agreement considering the experimental values
themselves are accurate only within 10% to 20%. How-
ever, if the spacer layer thickness becomes comparable to
the mean free path in Cu, the torque curves (the solid
curve in Figure 6 with t3 = 80 nm and 160 nm) cannot
be fit by the hybrid theory for any values of the interface
resistances.

The inset figure in Figure 6 shows how 1/η(0◦) (solid
line) and 1/η(180◦) (dash line) vary with t3 in the
Boltzmann calculation. These quantities are related to the
critical current for initiating a magnetization switching:
from parallel (P) to antiparallel (AP) JP→AP ∝ 1/η(0◦)
and from antiparallel to parallel JAP→P ∝ 1/η(180◦). So
the curves in the inset figure of Figure 6 also show that the
critical currents vary almost linearly with the spacer layer
thickness t3, and both curves have similar slopes. Experi-
mental measurements show the critical currents increasing
with spacer layer thickness [38].

We have seen in Figure 6 that Slonczewski’s hybrid
theory fails when the spacer layer is thick. The break-
down of the hybrid theory is also seen in Figure 7, where
we show how the spin-transfer torque curve changes with
the thickness of the left ferromagnetic layer t2. The input
values in the hybrid theory here in Figure 7 are the same
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Fig. 7. Spin-transfer torque at the right interface of
the spacer layer in a spin valve with layer thicknesses
200 nm/t2/1 nm/1 nm/160 nm with t2 = 10 nm and 160 nm.
Solid curves are calculated from the Boltzmann equation, solid
circles are from the hybrid theory. The inset shows the t2 de-
pendence of 1/η(θ) for θ = 0◦ and 180◦. The legend gives the
thicknesses of the layers.

as those used in Figure 6. In the case t2 = 10 nm, which is
small compared to the spin flip length lFsf = 59 nm in the
ferromagnet, the hybrid theory and the Boltzmann cal-
culation agree with each other very well. When t2 = 160
nm, t2 becomes comparable to or larger than lFsf , the hy-
brid theory starts to fail because an approximation of the
hybrid theory does not hold when t2 � lFsf . This approxi-
mation assumes the spin currents at two sides of the thick
ferromagnetic layer are equal: Q(x1) � Q(x2) (see Fig. 2).
But in this case of t2 � lFsf , Q(x1) depends on t2 in a
non-trivial way.

Next, we study a spin valve with geometry:

Cu(5 nm)/Co(40 nm)/Cu(1 nm)/Co(1 nm)/Cu(t5),

where the right lead length t5 varies from 10 nm to 160 nm.
Figure 8 shows how the spin-transfer torque curve acting
on the second (thin) Co layer changes when we vary t5. A
second bump around θ = 30◦ appears in Figure 8 as t5 be-
comes large. From the spin-transfer torque formula equa-
tions (50) and (51) in the hybrid theory, we see that the
second bump corresponds to the q− term in equation (51).
The value of q− is typically close to zero and negligible,
but it becomes prominent when the spin valve is highly
asymmetric. By asymmetry, we mean that the left and
right sides of the spacer layer have different spin depen-
dent properties. For instance, for a spin valve with the
geometry

Cu(5 nm)/Co(40 nm)/Cu(1 nm)/Co(1 nm)/Cu(160 nm),

the left side of the spacer layer has 5 nm Cu, and 40 nm
Co, and two Cu/Co interfaces, which can be considered
mostly ferromagnetic, because both Co and Cu/Co inter-
faces have spin dependent resistances. However, on the
right side of the spacer layer, there is only 1 nm of Co,
while there are 160 nm Cu and two Cu/Co interfaces. So
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Fig. 8. Spin-transfer torque at the right interface of
the spacer layer in a spin valve with layer thicknesses
5 nm/40 nm/1 nm/1 nm/t5 with t5 = 10 nm, 80 nm, and 160
nm. All solid curves are calculated from the Boltzmann equa-
tion. The inset shows the t5 dependence of 1/η(θ) for θ = 0◦

and 180◦ for this geometry. The legend gives the thicknesses
of the layers.

the 160 nm Cu dilutes the ferromagnetic character of the
Co bulk and the Cu/Co interfaces and makes the right side
of the spacer layer more like a non-magnet. This asymme-
try of the spin valve — ferromagnet-like on the left and
non-magnet-like on the right — leads to the emergence of
the second bump in Figure 8.

5 Summary

In summary, we developed a complete numerical algorithm
to solve the Boltzmann equation in multilayer heterostruc-
tures using a scattering matrix formalism. This method
solves the spin-dependent Boltzmann equation in a non-
magnet and a ferromagnet and matches the bulk solutions
using an interface scattering matrix for the distribution
functions. The final solution for the distribution function
is found by imposing boundary conditions, either from in-
finite leads or from the electron reservoirs. Our interest
in using this method is to calculate spin-transfer torque
in a spin valve structure. The results were found to agree
with the Slonczewski’s hybrid theory for geometries typi-
cally encountered in experiments but not when layer thick-
nesses become large compared to mean free paths. The
drift-diffusion method agrees poorly with the Boltzmann
calculation due to the extreme approximations it makes.

One of us (J.X.) is grateful for support from the Department
of Energy under Grant No. DE-FG02-04ER46170.
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Hamzić, A. Vaurès, G. Faini, J. Ben Youssef, H. Le Gall,
J. Magn. Magn. Mater. 272–276, 1706 (2004)

8. J.Z. Sun, Phys. Rev. B 62, 570 (2000)
9. D.H. Hernando, Y.V. Nazarov, A. Brataas, G.E.W. Bauer,

Phys. Rev. B 62, 5700 (2000)
10. X. Waintal, E.B. Myers, P.W. Brouwer, D.C. Ralph, Phys.

Rev. B 62, 12317 (2000)
11. M.D. Stiles, A. Zangwill, Phys. Rev. B 66, 14407 (2002)
12. Z. Li, S. Zhang, Phys. Rev. B 68, 24404 (2003)
13. Y.B. Bazaliy, B.A. Jones, S.C. Zhang, Phys. Rev. B 69,

94421 (2004)
14. M.D. Stiles, A. Zangwill, J. Appl. Phys. 91, 6812 (2002)
15. J. Xiao, A. Zangwill, M.D. Stiles, Phys. Rev. B 70, 172405

(2004)
16. D.M. Edwards, F. Federici, J. Mathon, A. Umerski, Phys.

Rev. B 71, 054407 (2005)
17. L. Berger, IEEE Trans. Magn. 34, 3837 (1998)
18. J. Grollier, V. Cros, H. Jaffrès, A. Hamzić, J.M. George,
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